

Contracting Authority:

Contractor:

Subcontractor:

TRENECON

STUDY ON BOTTLENECKS ALONG RFC AMBER FINAL PRESENTATION

Dec. 2020

OUTLINE

- 1) Implementation framework
- 2) Phases and timeline of implementation
- 3) Brief presentation of the Bottleneck Study
 - State of play topology, infrastructure parameters
 - Traffic demand (current and future)
 - Analysis of bottlenecks along RFC Amber
 - infrastructure, capacity, operational and administrative
 - Improvement measures evaluation (methodology, priorities)
- 4) Summary and main conclusions

1. Implementation framework

Co-financed by the European Union

1. IMPLEMENTATION FRAMEWORK

- PSA Activity 4 Bottleneck Study sets objectives
- Contract signed by Contracting Authority of RFC11, GYSEV Zrt. with Kontúr Csoport Kft., March 2019
- Subcontractor: TRENECON Consulting and Planning Ltd.
- Co-operation: Ad-hoc Working Group to manage implementation
- Regular presentations to MB, meetings with Ad-hoc WG members

1. IMPLEMENTATION FRAMEWORK

Stakeholders directly involved:

- IMs/AB as members of Ad-hoc Working Group
 - SŽ-I Slovenske Železnice Infrastruktura d.o.o
 - MÁV Magyar Államvasutak Zrt.
 - GYSEV Győr-Sopron-Ebenfurti Vasút Zrt.
 - VPE Vasúti Pályakapacitás-elosztó Kft.
 - ŽSR Železnice Slovenskej Republiky
 - PKP Polskie Linie Kolejowe S.A.
- Number of RUs were addressed substantive cooperation with Rail Cargo Carrier Kft. (spokesperson/ representative of RAG/TAG) invited to Ad-hoc WG
- Additionally: the C-OSS, MaBo and ExBo of RFC Amber

Co-financed by the European Union Connecting Europe Facility

2. Phases and timeline of implementation

Co-financed by the European Union

Timeline of Implementation: *March 2019 – December 2020*

Project implementation phases	Milestones	Start date	Completion date
Inception phase	Inception Report	04.01.2019	02.04.2019
Data collection phase	Summary Report	01.03.2019	30.11.2019
Analysis phase	Discussion Note	24.11.2019	30.04.2020
Elaboration phase	Draft Bottleneck Study	30.04.2020	30.09.2020
Finalisation of the Study	Final Study	15.09.2020	18.12.2020

Co-financed by the European Union

2. PHASES OF IMPLEMENTATION: COLLABORATION

Coordination – meetings, discussions:

Inception phase:

- With the Contracting Authority GYSEV 23 January 2019
- With the Hungarian partners 12 February 2019
- With the corridor stakeholders ad-hoc WG 12 March 2019

Data collection and analysis phases:

- With the ad-hoc WG 12 September 2019 presentation and discussion of preliminary findings, missing data
- With the Contracting Authority GYSEV 05 July 2019 progress of implementation
- With RAG/TAG spokesperson 23 July 2019 RFC Amber experience, RU needs

2. PHASES OF IMPLEMENTATION: COLLABORATION

Coordination – meetings, discussions:

Elaboration phase:

- With the ad-hoc WG 23 July 2020 status, main findings of the analysis, agreeing on the evaluation methodology
- With the ad-hoc WG 21 September 2020 presentation of the draft study, comments and approval of ad-hoc WG members

Finalisation phase:

- One-on-one discussions with stakeholders to come to a common understanding, to integrate comments to the satisfaction of national stakeholders
- E-mail discussion with RCC Kft. 13 November 2019 information exchange on operational and administrative issues
- On-line consultation with the Contracting Authority, MÁV, VPE 13 November 2019 - on traffic management, performance management issues

Co-financed by the European Union Connecting Europe Facility

2. PHASES OF IMPLEMENTATION

Data collection

- Extensive desktop research during the project
- Input from IMs/AB 3 rounds of excel data request:
 - 1st: data request was compiled in excel sheets for line sections and sent out to IMs/AB in April 2019
 - 2nd: data request (a) on traffic flows, (b) operational and administrative issues in excel sheets/questionnaire in May 2019
 - 3rd: request for missing data on projects, O/D traffic in Oct. 2019
- Direct input from RUs revised questionnaire on operational and administrative issues, February 2020
- Interviews, discussions with RAG/TAG (RCC), IMs/AB C-OSS representatives – on the phone/on-line during implementation as required for clarification

3. Presentation of the Bottleneck Study

Co-financed by the European Union

Bottleneck Study General introduction

Co-financed by the European Union

3.1 OBJECTIVES OF THE STUDY

According to the ToR the Bottleneck Study is prepared to:

 identify and describe bottlenecks of administrative operational and infrastructural nature with a focus on cross-border areas, capacity, TEN-T minimum requirements

 propose appropriate improvement measures to eliminate, reduce bottlenecks, to allow for more efficient rail freight operation

Eventually the Study is to support (substantiate) future investments to improve functioning of RFC Amber

Co-financed by the European Union

3.2 STRUCTURE OF THE STUDY

- 1. Executive Summary
- 2. Background and preliminaries
- 3. Objectives
- 4. Brief introduction of RFC Amber
- 5. Current infrastructure parameters
- 6. Current and future traffic demand and economic trends
- 7. Infrastructure and capacity bottlenecks
- 8. Operational and administrative bottlenecks
- 9. Measures for improvement

Co-financed by the European Union Connecting Europe Facility

3.3 INTRODUCTION OF THE CORRIDOR

- Topology RFC and TEN-T line categories on RFC Amber
- National and operational borders, ports and landbridges
- Nodes (urban nodes, marshalling yards, junctions)
- Common sections with other RFCs
- Identification of line sections as the units of assessment (homogenous technical parameters or capacity and traffic)

Graphic presentation of all important information on maps, using GIS software

3.3 INTRODUCTION OF THE CORRIDOR: RFC & TEN-T LINES

	principal	future principal	diversionary	future diversionary	connecting line	TOTAL
Length (line km)	3076	164	142	152	206	3740

	TEN-T core	TEN-T comp.	Non TEN-T	TOTAL
Length (line km)	1580	1194	966	3740

3.3 INTRODUCTION OF THE CORRIDOR: NODES

Urban nodes (as defined by TEN-T regulation):

- Slovenia: Ljubljana
- Hungary: Budapest
- Slovakia: Bratislava
- Poland: Katowice (not on the corridor lines), Krakow, Warszawa

Operational nodes along the RFC: marshalling and shunting yards, border crossings (pairs of stations), functional nodes, major junctions

Terminals: rail-road mainly, some IWW and sea ports

3.3 INTRODUCTION OF THE CORRIDOR: BORDER CROSSINGS

Port of Koper in Slovenia EU (Schengen area) internal borders: Hungarian-Slovenian border:

Őriszentpéter (HU) – Hodoš (SL)
 Slovak-Hungarian border

- Rusovce (SK) Rajka (HU)
- Komárno (SK) Komárom (HU)
- Štúrovo (SK) Szob (HU)
- Čaňa (SK) Hidasnémeti (HU)
- Slovenské Nové Mesto (SK) Sátoraljaújhely (HU)

Polish-Slovak border

- Zwardon (PL) Skalité (SK)
- Muszyna (PL) Plaveč (SK)

Landbridges (external borders outside the EU and Schengen area):

- Terespol in Poland (border with Belarus)
- Kelebia in Hungary (border with Serbia)

3.3 INTRODUCTION OF THE CORRIDOR: OVERLAPPING SECTIONS

Bottleneck Study

Identification of infrastructure bottlenecks

Co-financed by the European Union

3.4 EVALUATION METHODOLOGY – INFRASTRUCTURE, CAPACITY BOTTLENECKS AND INTERVENTIONS

	Steps		Output	
I. Definition of network and	STEP 1 - Defining present technical condition of the line sections	-	TSI compliance categories assigned to individual line sections	
Infrastructure bottlenecks and evaluation	STEP 2 - Defining comparative section relevance STEP 3 - Defining present characteristics of the nodes STEP 4 - Identification of topology issues		Relevance categories assigned to line sections Capacity issues at nodes, major stations, borders Deficiencies hindering seamless traffic flow	
II. Characterization and evaluation of interventions	 STEP 6 - Defining priority for intervention on each section and node STEP 5 - Setting target conditions STEP 7 - Defining types of proposed interventions STEP 8 - Assigning intervention types to sections, nodes 		Intervention priority defined on sections and major stations Target conditions defined Types of proposed measures Proposed type of measure for each section and major station	
	STEP 9 - Defining feasibility and cost category of interventions	-	Descriptive evaluation of feasibility for each section and time frame for implementation	

3.5 INFRASTRUCTURE ASSESSMENT: STATE OF PLAY

Graphic presentation of the following parameters, compliance with TEN-T parameters and RU needs – in detailed maps included in the Bottleneck Study:

- Lines, line sections
- Traction, power supply
- Number of tracks
- Train load, axle load
- Gradient, maximum train length
- Train/line speed for freight and actual restrictions
- Train control and ERTMS
- Loading gauge
- Traffic characteristics and capacity issues
- Stations, marshalling yards and border crossings (focusing on 740m freight train handling infrastructure and capacity issues)
- Terminals

3.5 INFRASTRUCTURE - STATE OF PLAY - HIGHLIGHTS

Electrification is a core requirement

 Non-electrified sections: connecting lines in Slovenia (Celje – Velenje and Ljubljana – Novo mesto) and in Slovakia (Komárno – Dunajská Streda – Bratislava Nové Mesto), border crossing section in Slovakia and Hungary at Slovenské Nové Mesto-Sátoraljaújhely

 Both 3kV DC and 25kV AC are present – bi-traction locomotives or loco change is needed

Topology issues hindering seamless flow:

 meandering alignment of corridor (slow section in Slovenia-Western-Hungary – Slovakia, Southern Poland)

 changing direction: Zalaszentiván, Komárom (HU), Komárno, Bratislava (SK), Tunel (PL) and Celje, Ljubljana (SL)

Train length and train load/weight capacity is low on almost 50% of the network

Line speed is inadequate on almost 40% of the network and frequent speed restrictions (causing rerouting, delays, uncertain ETA)

3.6 CURRENT TRAFFIC DEMAND

 Total train traffic on the sections of the RFC Amber slightly increased (by 20% from 2013 to 2018)

Considerably higher traffic on the western branch of the Corridor

- Highest traffic lines are in and around Warsaw, Bratislava, Budapest and Ljubljana due to suburban passenger train traffic
- International origin/destination type traffic data is not available, not registered

Co-financed by the European Union

STUDY ON BOTTLENECKS ALONG AMBER RAIL FREIGHT CORRIDOR Annual train traffic Total number of trains/section Tymbar

skunfélegyháza

3.6 CURRENT **TRAFFIC DEMAND**

Overall train traffic by line sections

Ambei

(thousand/year)

no traffic

20 - 40

40 - 60

60 - 80

planned line

Co-financed by the European Union

Connecting Europe Facility

80 <

< 20

Other traffic maps are also available in the Study showing:

- Proportion of freight trains
- Freight traffic change over time
- Forwarded cargo volumes

3.7 FUTURE TRAFFIC DEMAND

- Forecast based on Transport Market Study of RFC Amber (TMS) for the short term; correlation with GDP forecast and population projections
- Impact of COVID19 pandemic is considered (based on OECD data)

GDP growth (%, yoy)

- EU Reference Scenario (2016) to 2030 and 2050
- Growth in China and in the world based on long-term EUROSTAT/PWC data not considering COVID-19
- Forecast assumes that EU policy objectives for TEN-T network will be accomplished as planned
 Co-financed by the European Co-financed by the Euro

Co-financed by the European Union

 Calculation methodology of capacity utilisation differs by country – only descriptive categories from 'sufficient capacity' (means no capacity problem) to 'very serious capacity shortage' are mapped

 With the exception for the Koper – Divača and Luków-Deblin line sections, capacity shortage is not crucial

 Moderate capacity shortage is present on some sections, mainly overlapping with other RFCs and in urban areas

 Node bottlenecks are also present (marshalling yards, border stations and junctions)

Methodology of identification and evaluation:

Infrastructure bottlenecks: defined by the complexity of parameters of the main infrastructure elements that fail to ensure interoperability and TEN-T requirements for core network, considering sections and also nodes where capacity is found inadequate to manage future freight volumes efficiently.

Classification of line sections by their relevance considering:

- Definition of section relevance (RFC, TEN-T designation and traffic), where:
- Traffic category is based on current and forecasted freight train traffic
- Additionally: the respective **compound index** of TEN-T compliance (infrastructure parameters) and **capacity availability**

The outcome: prioritisation of line sections for improvement

Overall compliance of TEN-T requirements and further RU needs: the **Compound Index** – weighting of parameters

Parameter	Weight		Parameter values and their score in compound index				
max. train	250/	≥740m	600-739m	400-599m	<400m		
length	2370	5	4	2	1		
axle load and linear load	25%	D4 22.5 t/axle 8 t/m	D3 and D2 22.5 t/axle, 7.2 and 6.4 t/m	C4 and C3 20 t/axle 8 and 7.2 t/m		C2 20 t/axle 6.4 t/m	A- <16 t/axle <5 t/m
		5	4	3		2	1
line speed	10%	≥100 km/h	80-99 km/h	50-79 km/h	<50 km/h		
inte speeu	1070	5	4	2	1		
restrictions	10%	No or not significant permanent restriction	Justifiable speed limit (geometry, station etc.)	Moderate or only local speed limit (track, structure condition, crossing)		Seriou limitat significa	s speed ion (on nt length)
		5	4	3			2
max	100/	≤4.5‰	4.5-9.0‰	9.0-12.5‰	>12,5‰		
gradient	10%	5	4	2	1		
loading	10%	≥P/C400	≥P/C400 but adm restrictio	ninistrative n	<p c400<="" th=""><th></th><th></th></p>		
yauye		5	4		3		
ERTMS	10%	GSM-R & ETCS L2	GSM-R & ETCS L1	GSM-R	no		
		5	4	3	1		

The **Compound Index** is primarily a relative number, representing how much the section meets the TEN-T/TSI requirements and allowing to compare the sections to each other and rank them

Categorisation of RFC Amber sections by compound index:

Section quality compared to TEN-T requirements	Acceptable > 4.0	Fair 3.51 – 4.00	Poor 3.01 – 3.50	Very poor ≤ 3.0	Total
Poland	269km	317km	354km	300km	1240km
Slovak Republic	474km	189km	53km	-	716km
Hungary	289km	755km	212km	16km	1272km
Slovenia	110km	241km	-	162km	512km
Total	1142km	1501km	619km	478km	3740km

See next map for territorial distribution of sections with lowest and highest index.

STUDY ON BOTTLENECKS ALONG AMBER RAIL FREIGHT CORRIDOR

3.9 INFRASTRUCTURE AND CAPACITY BOTTLENECKS

Capacity utilisation and the comparative categories of compound index by section

Sections having the worst Compound Index are far from fulfilling the infrastructure requirements

Section Relevance – criteria for classification:

	Criteria					
TEN-T	RFC category	Traffic in % of RFC average				
core	principal	High: over 125%				
comprehensive	future principal	Average: 125% - 75%				
none	diversionary	Low: below 75%				
	future diversionary					
	connecting line					

Section relevance is a combination of the above three criteria designating the particular section into one of the four relevance categories (see next map):

- outstanding
- high
- medium
- low

Section relevance (combining traffic volume and TEN-T/RFC network role) and capacity issues, missing links at lines and nodes

Bottleneck Study

Identification of operational-administrative bottlenecks

Co-financed by the European Union

3.10 EVALUATION METHODOLOGY – OPERATIONAL, ADMINISTRATIVE ISSUES AND MEASURES

	Steps		Output
Identifying and	STEP 1 - Identifying potential bottlenecks	-	List of potential O&A bottlenecks
ranking of O&A	STEP 2 - Gathering stakeholders' feedback on issues	H	Revised list of issues with RFC11 relevance
135025	STEP 3 - Ranking of issues by relevance and impact		Issues in three priority groups to be addressed
f	STEP 4 - Setting target conditions	-	"The ideal conditions for RFC functioning"
- 1	STEP 5 - Defining potential measures	-	List of measures covering several actions to address identified bottlenecks
Evaluation of measures	STEP 6 – Defining categories, score ranges of feasibility and impact	-	Scoring matrix of measures based on feasibility and impact
	STEP 7 - Ranking of measures based on feasibility and impact	-	List of measures in three priority categories

3.10 OPERATIONAL AND ADMINISTRATIVE BOTTLENECKS

Background:

- Limited direct input from RUs, generic RFC issues
- Limited experience RFC Amber in operation since 2019
- Bilateral agreements concerning international rail freight are in place
- Co-operation, harmonization efforts are underway
- Sector policy objectives (Sector Statement)
- IT tools, guidelines, handbooks (RNE activity)

3.10 OPERATIONAL AND ADMINISTRATIVE BOTTLENECKS

Methodology of identifying and evaluating O&A issues:

- Desktop research assumed bottlenecks identified
- Questionnaire survey IMs, RUs
- General ranking by relevance, impact based on feedback
- Understanding causes of issues

3.10 OPERATIONAL AND ADMINISTRATIVE BOTTLENECKS

Categorization of identified bottlenecks by relevance/impact

Bottleneck	Ranking: impact category
1. CAPACITY MANAGEMENT	
1A - Path allocation procedure via C-OSS is inadequate	medium
1B - PaP parameters and RC fail to meet market requirements	high
1C - Limited applicability of the PCS and reliability of data	low
2. COMMUNICATION	
2A - Communication difficulties at handover points, borders	high
2B – Poorly functioning interfaces between national IT tools and the RNE tools	medium
2C – Inadequate coordination and sharing information on capacity restrictions, disturbances	high
2D - Insufficient language skills of staff	medium
3. TRAFFIC MANAGEMENT	
3A - Ineffective arrangements, processes at border crossings	high
3B – Low reliability of RFC trains impacts competitiveness	medium
3C – Competitive re-routing, contingency measures for traffic disturbances/TCRs are not available	high*
3D – RFC traffic management staff is not properly prepared	low
4. ADMINISTRATIVE ISSUES	
4A - Cross-border interoperability difficulties due to lack of harmonisation of national rules	high
4B - Not transparent, calculable procedures and charging in case of multimodal transport	medium
4C - Long technological times of forwarding outside the EU	medium

Bottleneck Study Measures to eliminate infrastructure bottlenecks

Co-financed by the European Union

3.11 INFRASTRUCTURE – PROPOSED MEASURES

Definition of intervention priority of sections, main steps are:

- a) Prioritizing, ranking the lines according to their TEN-T infrastructure compliance (compound index) and section relevance
- b) Setting target conditions and corresponding types of interventions to reach the targets and consequently eliminate the bottleneck(s)
- c) Definition of measures by line sections and nodes to support RFC Amber developments, assessment of feasibility and time frame

The intervention priority is based on the compound index value and the section relevance

Investment priority groups are:

- 1. improvement imperative
- 2. intervention proposed
- 3. desired for optimal RFC performance

Co-financed by the European Union

3.11 INFRASTRUCTURE – PROPOSED MEASURES

Methodology:

Matrix for prioritisation of sections considering compound index and section relevance

Section relevance:	outstanding	high	medium	low
Compound index:	outstanding	ingi	meanum	
≤ 3.0 very poor	1	1	1	2
3.01 – 3.50 poor	1	1	2	3
3.51 – 4.00 fair	1	2	3	3
4.00 < good	2	3	3	3

Target conditions: TEN-T Guideline requirements and further RU needs, sufficient infrastructure capacity for future traffic

3.11 INFRASTRUCTURE – PRIORITY OF LINE SECTIONS

Improvement priority groups of sections for overall functioning of RFC Amber

Not reflecting national preferences (passenger traffic, other corridors' freight flows etc.)

3.11 INFRASTRUCTURE – PROPOSED MEASURES

Types of measures/intervention categories

- New line/new section construction
- Upgrade to TSI requirements, by distinguishing where:
 - Full reconstruction/upgrade is needed (e.g. to increase axle load)
 - Partial upgrade is needed (ERTMS, train length, restrictions etc.)
- Capacity enhancement (combined with upgrade where needed)
 - of line sections
 - of sections being part of an urban node
 - of stations (marshalling yards, border stations, nodes, junctions)

Considering feasibility of interventions (complexity, cost, interdependencies)

3.11 INFRASTRUCTURE – PROPOSED INTERVENTIONS ON LINES

Proposed types of interventions for improvement and their time frame

Time frame is defined by the intervention priority and also other obligations (e.g. TEN-T Core 2030)

Type of Intervention

- capacity enhancement & major reconstruction / upgrade to comply TSI
 capacity enhancement & partial upgrade (ERTMS/train length/restrictions)
 major reconstruction/upgrade to comply TSI
- partial upgrade (ERTMS/train length/restrictions)
- 😑 building new line

electrification

Proposed time frame of interventions

short-medium

long

3.11 INFRASTRUCTURE – PROPOSED INTERVENTIONS AT NODES

Types of the station (or local) interventions and their priority

Station tracks of 740 m, marshalling yard and border station developments to increase capacity, upgrade infrastructure and reduce waiting time at borders

New triangle tracks for seamless traffic flow

3.11 INFRASTRUCTURE – PROJECTS IN THE PIPELINE

Ongoing developments, project proposals and plans by IMs

Supports the elimination of infrastructure and capacity bottlenecks

- upgrade to TSI requirements and 2nd track construction upgrade to TSI requirements
- **ERTMS**
- building new line
 - station development
 - other (capacity increase or partial reconstruction)

Time frame

- ongoing
- short term plan
- medium-long term plan

Bottleneck Study

Measures to improve operationaladministrative bottlenecks

Co-financed by the European Union

3.12 MEASURES TO IMPROVE O&A BOTTLENECKS Methodology of evaluation

- 1. Setting target conditions for each bottleneck category
- 2. Definition of potential measures based on main causes identified
- Evaluation of measures based on feasibility and impact (interdependence) (MCA): Scoring of impact and feasibility of O&A interventions

Criteria category/score	1	3	5
impact	low	medium	high
feasibility	unrealistic	complex	feasible

4. Ranking of potential measures in three categories

Scoring categories to define O&A intervention priority groups

Ranges for priority group	4-9	10-14	15-20
Intervention priority group	desirable	to be considered	proposed
group		considered	

3.12 MEASURES TO IMPROVE O&A BOTTLENECKS

Ranking of O&A interventions by impact and feasibility score

Ref. no.*	Proposed measures	lssue impact	Total score	Priority category
1B	Enhance surveying and consideration of RU demand in PaP parameters and RC to offer competitive RFC capacity	high	18	proposed
2A	Actions to improve communication efficiency and transparency at national borders	high	18	proposed
2C	Interventions improving coordination in planning and sharing information on capacity restrictions, disturbances	high	16	proposed
3A	Harmonisation of processes and procedures at borders	high	16	proposed
3B	Interventions to ensure priority and increase punctuality of RFC trains	medium	16	proposed
3C	Develop efficient re-routing options, contingency for disturbances, restrictions	high	16	proposed
4A	Enhance cross-border interoperability by harmonisation of national rules, requirements and use of common IT platforms	high	16	proposed
2B	Improve functionality and reliability of RNE Tools for RFC Amber	medium	14	to be considered
1A	Ensure resources and increase role of a competent C-OSS for path allocation and capacity planning	medium	12	to be considered
2D	Improve language skills of staff and ease their communication by using standardized forms, messages with IT support	medium	12	to be considered
3D	Strengthen the role and capacity of RFC traffic management by preparing staff and exchange of experience	low	12	to be considered
4B	Simplify procedures in the multimodal transport chains and support freight forwarders in route planning, cost calculation and path reservation	medium	10	to be considered
1C	Improve applicability of the PCS and reliability of its data content	low	8	desirable
4C	Harmonisation of rules/legislation to ease administrative burden	medium	6	desirable

Co-financed by the European Union

4. Summary, main conclusions

Co-financed by the European Union

4 SUMMARY, MAIN CONCLUSIONS

- The evaluation is based on the data input of IMs/AB and RFC Amber documents like CID, TMS
- It is beyond the scope of the strategic-level Study to set an overall priority list of interventions and define project proposals
- National considerations, other network developments, availability of funding, etc. can affect implementation preferences, feasibility of individual actions
- However, the priority groups of interventions clearly indicate what sections (connecting stations or nodes) and at what level of development could mostly improve functioning, competitiveness of RFC Amber
- For more detailed definition of interventions (technical content, implementation framework), specific studies and designs have to be prepared
- Complex O&A issues require strong co-operation among Member States (IMs) concerned, often EU level harmonisation

Co-financed by the European Union Connecting Europe Facility

4 SUMMARY, MAIN CONCLUSIONS

- 1. Infrastructure and capacity bottlenecks, interventions
 - a. Most critical sections for the functionality of RFC Amber are those where current capacity is already insufficient.
 - Infrastructure developments should focus on elimination of significant restrictions (axle load, speed, train length primarily) in sections
 - c. Interventions at nodes should focus on capacity for long freight train handling and supporting seamless traffic flow along the lines
 - d. Line bottlenecks are interlinked to problems at nodes and vice versa (e.g. punctuality, uncertain ETA at the border influences the unnecessary waiting time and RU efficiency, organisation)
 - e. Relative priority of sections in each member states are set in the study to support decision making

4 SUMMARY, MAIN CONCLUSIONS

- 2. Operational and administrative issues, measures
 - a. Note the limited operational experience of RFC Amber
 - b. Theoretical order of measures many have been long in the forefront of the sector (RNE)
 - c. Do not apply uniformly to procedures of all member states, IMs or handover points
 - Most of the identified issues have been addressed, efforts have been made for improvement at EU/RNE level or at other RFCs;
 - At EU/RNE level guidelines, IT support have been developed – they need to be adopted in RFC Amber management processes

 \neq

Thank you for your attention!

Co-financed by the European Union